
Strategy in Battle Royale Games

Ao Chen

Zhenning Liu

October 15, 2021

Abstract

We create a discrete-time mathematical model for battle royale games (BRG) to investigate

the game theory behind this popular class of video games. We use a generalized asymmetric

prisoner’s dilemma to study the microscopic decision-making scenario and successfully find the

Nash equilibrium by theoretical analysis. Repeated numerical simulations are performed to

investigate how the macroscopic strategy influences the game dynamics. We conclude that for

some specific setup of the game, a unique optimal strategy exists, while for others the best

choice is conditioned on other participants’ choices. The evolution of strategies are also studied

together with examples from existing BRGs including PUBG and APEX Legends.

Contents

1 Introduction 2

2 Modelling of the game 4

2.1 Overview . 4

2.2 Scoring . 5

2.3 Players . 5

2.4 Fight matching . 6

2.5 Decision making . 6

2.6 Battle simulator . 7

2.7 Other details . 8

3 Microscopic Strategy: Fight or Retreat? 9

3.1 Generalized asymmetric prisoners’ dilemma . 9

3.2 Probability of different combat results . 10

3.3 Rewards under different combat results . 12

3.4 Nash equilibrium . 13

4 Macroscopic Strategy: Aggressive or Peaceful? 15

4.1 Macroscopic strategies . 15

4.2 Type-n games . 15

4.3 Optimal strategy for skill = 5 games . 16

4.4 Various skill values and phase transitions . 18

5 Summary and outlook 21

5.1 Our results . 21

5.2 Outlook . 22

A Program 24

1

Chapter 1

Introduction

Battle royale refers to a non-cooperative fight among many combatants which lasts until only

one of them remains standing. It is often used in many fictions and films like The Hunger Games

to show the humanity in an extreme environment. In recent years, many popular shooter video

games, PlayerUnknown’s Battleground (PUBG), Fortnite and APEX Legends included, adopt

the battle royale rule. In these games, many people are scattered in a large field and their goal

is to become the only survivor. There is usually a safe zone on the game map shrinking with

time that forces people to fight. It requires the players to have a good shooting accuracy in

combats as well as a clear strategy to determine their actions in different situations.

In this thesis, we want to study the strategy in battle royale games (BRGs) using game-

theoretic tools together with computer simulations. Our purpose is to present a guidance for

game players to get a higher score in the game and for game designers to improve the game.

(a) PUBG [1] (b) APEX [2]

Figure 1.1: Popular battle royale games

2

With a simplified rule based on PUBG and APEX, we separate the strategy into a microscopic

part and a macroscopic part.

The microscopic strategy determines the players’ choice in a 1 vs. 1 combat. We assume the

information during the combat is totally transparent, so the players can estimate whether they

are in an advantageous situation and then make a decision of fight or retreat. The interaction

in the microscopic strategy is relatively simpler because there are essentially only two players

in a combat, so it will be simplified as a prisoner’s dilemma which we will analyze theoretically.

On the other hand, the macroscopic strategy represents the tendency of players to be aggres-

sive or peaceful. Avoiding fights may make it easier to get a higher rank, but being aggressive

can help players to gain the killing scores and better equipment from eliminated enemies, the

latter improving the winning rate in successive combats. The macroscopic dynamics is more

complex because it involves the interaction among all survival players. For example, if most

teams are aggressive, then the number of survivors will decrease quickly and a player can easily

gain the rank score through avoiding combats. We will run numerical simulations to investi-

gate whether an optimal macroscopic strategy exists under different game conditions, and try

to explain the different player behaviours in different BRGs.

It is worth noting that the microscopic and macroscopic strategies are separated. A player

may avoid combats in its macroscopic strategy but find itself advantageous in an unavoidable

combat and then choose to fight until killing the enemy in the microscopic strategy. The

microscopic strategy is determined by the Nash equilibrium of the prisoners’ dilemma of the

combat situation, while the macroscopic strategy of a player is consistent during the whole

game and may only be changed after the end of one game.

3

Chapter 2

Modelling of the game

Obviously, we are unable to emulate a game of PUBG or APEX Legends in every detail due

to the requirements of huge computational resources. In fact, it is also unnecessary to do so,

since the game mechanics contains a significant amount of properties that have nothing to do

with the game theory problems that we are interested in. Examples are geography of the game

map, functional difference between weapons and body armors, and skill difference between

players etc. We have to simplify the game to eliminate these unrelated aspects and focus on

the microscopic and macroscopic strategies that dominate an idealized battle royale game. In

this section we present a general modelling with some free parameters which can be used to

distinguish between different battle royale video games.

2.1 Overview

Instead of simulating the real-time dynamics of a game, we split the timeline into a sequence

of discrete rounds as the smallest unit of time. We model the 2-dimensional motions of players

in BRGs mainly by a probabilistic fight matching module by which people are matched in

pairs to fight against each other. If by any chance someone is matched, there is a decision

making module which simulates how players make decisions to engage or to retreat. If either

side decides to fight, a battle simulator will give a result – one player might be eliminated

from the game for losing the battle. The simulation will terminate once all but one players are

eliminated, which will definitely happen after certain number of rounds because the shrinking

safe zone is also considered in our simulation. The active area decreases with time, so battles

will appear more and more frequently and everyone will be forced to fight in the end, just like

a typical PUBG or APEX Legends game. A ranking will be calculated for players based on

survival time. With no doubt, the only survivor will be the rank-1 player.

4

2.2 Scoring

The rank-1 player is not necessarily the most successful player due to the existence of a scoring

system. Players earn scores from not only the rank but also the amount of elimination. The

goal of a professional player is to maximize the score. The score si earned by the ith player

with number of killing ki and rank ri can be expressed by the following formula

si = skill · ki + srank(ri) (2.1)

where skill denotes the score awarded for each elimination and srank(ri) stands for the score

given for being rank-ri player. skill and srank are pre-defined characteristic values for every

specific BRG. They largely determine the optimal choices of macroscopic strategies. If skill is

significantly higher than srank, then players are more encouraged to join battles to kill other

participants, and vice versa.

In our work, we keep the score for ranking constant, because what really matters is the ratio

of 2 types of scores. Table 2.1 shows how much score is given for each rank that one player

may end up with.

Table 2.1: Ranking scores.

ri 1 2 3 4 5 6 7 8 9 10 11-15 16-20 21-25

srank(ri) 15 12 10 9 8 7 6 5 4 3 2 1 0

The ratio of skill and srank(ri) is actually a key property that distinguishes different BRGs.

For example, if we use the srank(ri) values given by table 2.1, APEX Legends can be treated

as a game with skill ≈ 5 while PUBG is a game with skill ≈ 9. A fun fact is that in top-level

E-sports games, APEX participants usually tend to avoid fighting as much as possible and

PUBG players are more willing to join battles. We will further investigate this topic in chapter

4.

2.3 Players

There are 25 players at the beginning of the simulation. Every player is modelled by 3 at-

tributes: HP (hit point), maxHP (upper limit of HP) and ATK (attacking power). A player

is “eliminated” if his HP is reduced to 0. In typical BRGs, there are way more attributes

related to a player, but we prefer to make a generalized model and get rid of technical details.

Hence, we model both health value and body armor value by the HP, and model any protective

5

equipment, such as helmet or high-level body armor, by the maxHP. Furthermore, all weapons

and/or any other game-specific properties related to fighting strength are treated as a single

ATK value.

Every player is initialized with identical attributes before a game simulation begins. We

also assume all players are equally skilled. It means that, in battle simulations, the probability

distribution of damage dealt is always the same for 2 players if they have the same ATK value.

The microscopic strategy in deciding whether a player wants to fight or retreat when he/she

is chosen in a battle, is also identical for all players. However, the macroscopic strategy which

dominates how frequent the player will encounter a battle, may differ for different players. In

our simulation, we only consider 2 options of macroscopic strategy – aggressive (strategy 1) and

peaceful (strategy 0). Being aggressive means the player tends to search and kill other players

to earn killing score, while being peaceful means the player prefer to avoid fighting to obtain

score from higher ranking.

2.4 Fight matching

In round t, for every player that is not in a battle, say the ith, there is a probability pt(i)

to be chosen by the fight matching module to join a battle. This probability is affected by

the macroscopic strategy as well as the density ρ of remaining players in the safe zone, since

higher density implies higher probability of encountering each other. Quantitatively, pt(i) can

be expressed by

pt(i) =

0.1 +mρ, strategy = 0

0.3 +mρ, strategy = 1
(2.2)

where m = 1 is the density parameter that quantifies how much the density should affect the

probability of being chosen.

The fight matching program runs at the end of each round. All chosen players will be

matched randomly in pairs and in the next round, the decision making module will decide the

behaviour of every involved player in the battle simulator.

2.5 Decision making

Once a player is chosen by the fight matching module to take part in a battle against another

player, our simulation system gives 2 options to him. One is to fight and the other one is to

retreat. We assume players know every attribute of the opponent, therefore this decision-making

6

can be modelled as an asymmetric prisoner’s dilemma. We propose a universal microscopic

strategy to model and solve this dilemma. It will be discussed in detail in chapter 3.

2.6 Battle simulator

A battle is defined as a game of reducing HP value based on opponent’s ATK value between

exactly 2 players. The battle simulator receives orders from decision-making module as a binary

pair (d1, d2) ∈ {0, 1}2 where di = 0 means player i decides to retreat, and di = 1 means he

determines to fight against the enemy. The general damage formula in a certain round between

player 1 and 2 is the following.

HP1 ← HP1 − rN2 · d2 · ATK2 (2.3)

HP2 ← HP2 − rN1 · d1 · ATK1. (2.4)

Here rNi ∼ N (1, σATK) is a random number satisfying Gaussian distribution and σATK is

its standard deviation. Such a randomness input is necessary, otherwise the simulator and the

microscopic strategies would be deterministic.

It turns out that the decision will never be both sides retreating, which will be discussed in

4. Therefore, we only need to consider 2 cases. If both players choose to fight, d1 = d2 = 1,

damages and remaining HPs will be computed. If both survive from the battle, the decision-

making module will be called again in next round and the battle will continue. If one player

chooses to retreat while the other fights, let’s say d1 = 0, d2 = 1. This is actually related to

the “betray” case of prisoner’s dilemma. Player 1 will first receive a damage while player 2 will

not. If player 1 still has HP1 > 0 after being damaged, the battle simulator will generate a

random bit rEscape ←r {0, 1} to determine if he can successfully retreat. rEscape = 1 means it is

successful, and the battle simulator terminates. If rEscape = 0, then the battle will continue in

next round and the decision needs to be made again.

If in any of the above case, any side of a battle ends up with HP ≤ 0, he is eliminated in the

simulation and the battle simulator terminates. We will keep an record of eliminated players

to calculate how much they scored, but they will not be chosen in any further battles since

they are no longer active. As an extra reward of the victory, the winner will get “weapon”

(increasing ATK) and “armor” (increasing maxHP) from the eliminated player and therefore

has greater opportunity in winning next battle.

7

2.7 Other details

2.7.1 Looting

As a rather popular feature in BRGs, it is worth considering looting in our simulation. Looting

is modelled as a probabilistic increase of maxHP or ATK. Specifically, in each round, there is a

probability ploot = 0.1 for each player to have ATK value added by 10 or maxHP value added

by 20.

2.7.2 Recovery from a battle

Almost all BRGs have the mechanism allowing players to gain HP by medication, bondage,

recharging armor, or any specific in-game action. Our setup in the simulation is that, if a player

is not in a battle for more than 1 round, then his HP is automatically restored to maxHP.

8

Chapter 3

Microscopic Strategy: Fight or

Retreat?

3.1 Generalized asymmetric prisoners’ dilemma

Table 3.1: Traditional prisoners’ dilemma (T > R > P > S)

cooperate defect

cooperate (R,R) (S, T)

defect (T, S) (P, P)

Table 3.2: Generalized asymmetric prisoners’ dilemma

retreat fight

retreat (R1, R2) (S1, T2)

fight (T1, S2) (P1, P2)

The microscopic strategy determines the choice when two teams encounters. We use the

prisoners’ dilemma to describe this situation. Every player can choose to retreat (cooperate) or

fight (defect). Compared with traditional prisoners’ dilemma, there are three major differences.

1. The combat is stochastic, so every choice corresponds to many possible situations. The

reward will be given by the expectation value of the score under a specific choice.

2. The T,R, P, S values are different for different players in the asymmetric prisoners’

dilemma. When both player choose to fight, for instance, the player with better equipment

will have a larger chance to win.

9

3. T > R > P > S does not always apply in the generalized prisoners’ dilemma. For

example, sometimes P1 < S1, which means the player prefers to avoid the combat and

bear the enemy’s fire instead of having a head-on fight.

To solve the first difference, we need to calculate the expected rewards under different

choices, which requires (1) the expected rewards under different combat results, (2) the proba-

bility of different combat results. These quantities will be calculated in the following sections.

After that, we will analyze the generalized asymmetric prisoners’ dilemma to give the Nash

equilibrium strategy.

3.2 Probability of different combat results

Table 3.3: Possible combat results

retreat fight

retreat (stop, stop) (stop, stop) or (lose, win)

fight (stop, stop) or (win, lose) (win, lose) or (lose, win)

Table 3.3 shows that there are many possible results under the same choice. ”Stop” means

the combat stops due to retreat, and win/lose means one player kills the other player. Except

for retreat of both sides, all other situations contain two possible outcomes. We will calculate

the probabilities of different situations in this section.

3.2.1 Probability of successful retreat

If one player chooses to retreat and the other player chooses to fight, the retreating player

will have a probability to retreat successfully. In every round, there is a chance of successful

retreat as long as the HP value has not been reduced to 0 under enemy’s fire. To calculate the

probability, we first need to know the damage caused by the enemy. In the n’th round, the

damage d(n) obeys the normal distribution

d(n) ∼ ATK× (1 + δN (0, 1)), (3.1)

where ATK is the enemy’s attack value and N (0, 1) is the standard normal distribution. The

total damage from the 1st round to the n’th round is given by

D(n) =
n∑
i=1

d(i) ∼ ATK× (n+ δ
√
nN (0, 1)), (3.2)

10

where we have used the sum rule of normally distributed random variables [3].

The probability of successful retreat in the n’th round is given by the two conditions: (1)

the HP has not been reduced to 0; (2) the successful retreat happens at this round. The two

conditions are irrelevant, so the probability is a product of two terms

Pstop(n) = P (D(n) < HP)× Prun(1− Prun)n−1, (3.3)

where Prun is the probability of successful retreat when the player still survives. P (D(n) < HP)

is easily determined by the cumulative distribution function of the normal distribution, which

can be given by most modern scientific computing packages like SciPy [4]. The total retreat

probability is the sum over all terms

Pstop =
∞∑
n=1

Pstop(n). (3.4)

It is impossible to calculate the sum of this infinite series. Fortunately, the term P (D(n) <

HP) converges to 0 quickly when the expected damage E[D(n)] = n× ATK is far larger than

HP, so we can set a truncation value N and approximate P (D(n) < HP) with n > N as 0.

Based on the total damage expression Eq. (3.2), we use the famous 3σ law to give the truncation

condition

ATK× (N − 3δ
√
N) ≥ HP. (3.5)

N ≥ 4.5δ2 + ROUND + 3δ
√

4.5δ2 + ROUND, (3.6)

where ROUND = HP/ATK is the estimated number of rounds required to deal enough damage.

N is chosen to be the lowest value satisfying this inequality. The approximate retreat probability

is

Pstop ≈
N∑
n=1

Pretreat(n). (3.7)

3.2.2 Probability of winning a head-on combat

The head-on fight is more complex than the previous condition in which one player retreats. It

is very hard to calculate the winning probability of a player, so we only roughly estimate the

probability. The expected number of rounds in the combat is

ROUND = min(HP1/ATK2, HP2/ATK1), (3.8)

where the subscript represents different teams. The winning condition of team 1 is roughly

given by the following expression

HP2 −D1(ROUND) < HP1 −D2(ROUND), (3.9)

11

where D1 and D2 are defined in Eq. (3.2) with ATK given by the value of the corresponding

team. Using the sum of normal distributed variables [3] again, we obtain

D2(ROUND)−D1(ROUND)

∼ ATK2(ROUND + δ
√

ROUNDN2(0, 1))− ATK1(ROUND + δ
√

ROUNDN1(0, 1))

∼ (ATK2 − ATK1)ROUND + δ
√

ROUND(ATK2
1 + ATK2

2)N (0, 1).

(3.10)

The approximate winning probability of team 1 is

Pwin ≈ P (D2(ROUND)−D1(ROUND) < HP1 − HP2)

= P

(
N (0, 1) <

(ATK1 − ATK2)ROUND + HP1 − HP2

δ
√

ROUND(ATK2
1 + ATK2

2)

)
,

(3.11)

with the last expression also given by the cumulative distribution function. This equation is a

rough estimation allowing us to avoid the calculation of series summation as in Eq. (3.7) at the

cost of introducing larger errors.

3.3 Rewards under different combat results

There are three different results for a player participating in the combat — lose, stop or win.

We will analyze the expected rewards under the three combat results.

3.3.1 Lose

This is the simplest situation. The player has to quit this game and will not obtain any score

in the rest of the game, which means the expected reward is 0.

3.3.2 Stop

The player will not benefit from the current combat, but will obtain scores in the successive

game. We will estimate the score obtained by surviving or killing other players.

The surviving score is determined by the rank of the player, which can be estimated by the

current equipment of the player. A player with better equipment is more likely to survive in

the successive combats and obtain higher surviving scores. We calculate the expected rank of

the player through virtual combats against all other surviving players in the game. The virtual

combats, which do not really happen, are tools for us to test the combat effectiveness of the

player. The winning probability of the virtual combat is given by Eq. (3.11). We will sum

over all these probabilities to obtain the expected rank of the player. For example, if there are

12

three survivors and one of them has 30% and 70% probability of winning the other two players

respectively, then the estimated rank of this player is 2. After knowing the estimated rank, we

can obtain the surviving score through checking the score table.

The calculation of the killing score is a bit more complex. Considering the difficulty of

beating players with better equipment, the potential killing number is roughly the number of

survivors with a lower rank than the player, with the rank estimated above. However, these

survivors with lower ranks may also be killed by other players, so we calculate the killing weight

wi which is given by the player’s combat frequency divided by the sum of all combat frequencies,

i. e.

wi =
pt(i)∑
j pt(j)

, (3.12)

with pt(i) given by Eq.(2.2). The estimated killing number is the product of this weight and the

potential killing number given by the rank. This equation shows that the macroscopic strategy

may have a minor impact on the microscopic strategy

3.3.3 Win

The expected rewards of the winning player is similar to the case of stopped combat. The dif-

ference is the winning player will obtain an immediate killing score and some better equipment

from the enemy. With the better equipment, it is likely for the player to obtain more surviving

and killing scores in the remaining game. This effect is also calculated here. We will conduct a

virtual equipment update before calculating the estimated rank, which improves the rank and

hence the expected killing number.

3.4 Nash equilibrium

After the great effort of calculating the probabilities and rewards, we come to the stage to

obtain the R, S, T, P values. According to Table 3.2 and Table 3.3, these quantities can be

calculated. For example, the reward for retreating under enemy’s fire is

S = Pstopsstop + (1− Pstop)slose, (3.13)

where sstop and slose represent the expected scores of stop and lose, respectively.

A direct result we can obtain is that the two encountering players will not both choose to

retreat. If one player choose to retreat, the rewards of the other player under different choices

will be R = sstop and T = Pstopsstop +(1−Pstop)swin. We always have R < T due to sstop < swin.

13

Consequently, the two players will not choose to retreat (cooperate) at the same time, which

means this is never a Nash equilibrium point.

There are three possible situations in the generalized asymmetric prisoners’ dilemma, each

of them corresponding to different Nash equilibrium points. We will analyze them one by one.

When S1 < P1 and S2 < P2, both players will choose to fight. It is similar to the traditional

prisoners’ dilemma in which both players will defect. This situation can happen even when

R1 > P1 and R2 > P2, so the two encountering players have to fight under the constraint of

the prisoners’ dilemma even though the best choice for both of them is to retreat.

When S1 < P1 and S2 > P2, the player 1 will choose to retreat under the fire of player 2.

This can happen if the player 2 has an overwhelming advantage in the combat. The player 1

have to retreat in order to survive. The situation with S1 > P1 and S2 < P2 is similar.

When S1 < P1 and S2 < P2, both players want to retreat instead of having a direct combat.

However, only one of them will retreat because of the impossibility of both retreat as mentioned

above. This situation therefore has two Nash equilibrium points. In our simulations, we always

choose the Nash equilibrium by forcing the player with smaller winning probability in the

head-on combat to retreat.

In this chapter, we analyze the generalized asymmetric prisoners’ dilemma to determine

the players’ choice in a combat. After some efforts of calculating the expected rewards, we

summarize their choices into three situations. The most interesting situation is the one similar

to the traditional prisoners’ dilemma. It is worth mentioning that this situation often happens

in professional competitions of PUBG or APEX, which makes the game more exciting and

presents more requirements for the macroscopic strategy of the player. In the next chapter,

we will utilize the conclusion in this chapter and perform some simulations to analyze the

macroscopic strategy.

14

Chapter 4

Macroscopic Strategy: Aggressive or

Peaceful?

Apart from decision-making when encountering a battle, the player’s strategy also influences

how frequent he meets another player and is forced to fight. In this section, we discuss how to

model this macroscopic part of the strategy.

4.1 Macroscopic strategies

As is mentioned in 2, our highly simplified model only considers 2 macroscopic strategies.

Strategy-0 is the peaceful way, by which the player has less probability of encountering other

players, hence are less likely to be eliminated in the early game and correspondingly have less

chance to gain score from killing. Strategy-1 is the other way around where players tend to

search-and-destroy. Such an aggressive game-play is quite popular for casual players since they

prefer to enjoy the shooting/battle content of video game. However, what a casual player like

to do has nothing to do with game theory. In this work, we are more interested in what the

optimal strategy is for a serious player looking for higher scores for a specific BRG. This is

actually not that far from a regular player since both APEX Legends and PUBG feature a

well-defined ranking system. And lots of BRGs have become a significant part of the rising

E-sports universe.

4.2 Type-n games

Let us come back to the simulation. Since every player is initialized with the same attributes

except a binary number representing his macroscopic strategy, they can be treated as indis-

15

tinguishable individuals like atoms or elementary particles. It is therefore reasonable to call a

game type-n if among all 25 players, there are n players taking strategy-1 and 25 − n taking

strategy-0. We can further conclude that, if skill is fixed, the simulation result of every type-n

game is sampled from the same probability distribution Xn. Here the result contains but is not

limited by the scores got by players, lifetime of the game and so on.

One corollary of the above claim is that, there are at most 26 different types of simulation

regarding choices of macroscopic strategies, since n ∈ {0, 1, . . . , 25}. Thus, if we want to

investigate the optimal strategy of a player, we simply need to simulate for all 26 scenarios and

see if there is a difference in expected scores for 2 strategies.

4.3 Optimal strategy for skill = 5 games

We start by investigating skill = 5 games. This model is closely related to APEX Legends.

Figure 4.1: These histograms show distributions of scores earned by players choosing strategy-0

and strategy-1, respectively. The data is obtained by 500 times of simulation of type-5, type-10,

type-15 and type-20 games in skill = 5 case.

The distribution of scores for different types of game is shown in Fig 4.1. Here we can

observe some fun facts. It seems strategy-0 has higher expectation of scores in all 4 types of

16

games. Although strategy-1 players have better opportunity to gain extremely high scores,

they are also more likely to end up with extremely low score for being eliminated in early-game

battles. However, such a risk decreases if the total number of aggressive players is fewer in the

game.

Figure 4.2: This figure shows how the mean score of different macroscopic strategy changes

with the total number of strategy-1 players in the APEX-like game. The data is obtained by

500 times of simulation of each type-n game.

In figure 4.2, simulation results for 24 types of games are summarized together. (The reason

why it is 24 instead of 26 is that the all strategy-0 case and the all strategy-1 case are extreme

cases where we cannot see such a comparison.) As the figure shows, in an APEX-like BRG

where skill = 5, strategy-0 is indeed always the better choice. If 25 equally-skilled professional

players play the game together again and again, no matter what their initial experience is,

their strategies will all eventually evolve to 0. This is not a surprising result because in real-life

APEX Legends E-sports games, avoiding early battles and postponing inevitable fights as late

as possible has become a common practice among professional players as well as high-rank

players in the ranking system.

We can also see that, the advantage of strategy-0 is less significant when the majority prefers

the peaceful game-play. We reasonably conjecture that, if the score assigned to each elimination

is increased, the aggressive strategy should be optimal in at least some types of game. And

there should be a cross-point at which 2 strategies are equally optimal. This will be investigated

in next section.

17

4.4 Various skill values and phase transitions

On various values of skill ∈ {3, 4, 5, 6, 7, 8, 9, 10}, we perform repeated (500 times as usual)

simulations for every possible type of game. In figure 4.3 we present the outcomes of simulations.

Figure 4.3: These figures show 2 macroscopic strategies’ mean score variation with respect to

type of the game as well as skill. Apart from the scatter diagram, the fitted quadratic curves

are also plotted, such that the intersections of expected scores can be found for skill = 7, 8, 9.

18

The quadratic fitting of data points seems to be surprisingly good for extreme values of

sskill. And the results of simulations perfectly verifies our conjecture. The peaceful strategy is

always the better one with small values of sskill. But it is no longer the all-time optimal when

sskill = 7 where strategy-1 gives higher expected score for type-n < nc = 5 games. Here the

cross-point of 2 curves of expected scores is denoted by nc. It can be observed that nc increases

as sskill increases and it disappears again when the score for killing is equal to or higher than

10. In this case, the aggressive strategy is the optimal choice for all types of game.

nc can be interpreted as the point where phase transition happens. When sskill ≤ 6, no

phase transition exists and strategy-0 is always optimal. When sskill ≥ 10, there is still no

phase transition but strategy-1 is always better. When 7 ≤ sskill ≤ 9, strategy-1 is optimal

when n < nc and strategy-0 is optimal when n > nc, which is a phase transition.

Although we cannot give an exact value, but we believe that if sufficient computational

resource is given, it is possible to very accurately compute the 2 threshold values of sskill where

nc disappears. But from the current data obtained, we are still able to draw a phase diagram

in figure 4.4 that shows in what situation a certain macroscopic strategy is preferred.

3 4 5 6 7 8 9 10
skill

0

5

10

15

20

25

st
ra

te
gy

-1
 p

la
ye

rs

Strategy 0 preferred

Strategy 1 preferred

Figure 4.4: The phase diagram generated by our simulations.

It might also be interesting to consider the evolution of strategies for 7 ≤ skill ≤ 9 where

a phase transition exists at nc. If 25 players play the game together once and once again.

They will learn from their experience that for a type-n game, the optimal strategy depends

on if n > nc or n < nc. And their attractions for both strategies will be updated with more

and more games played. We can conclude that there must exist an equilibrium at which every

player’s attractions a0 and a1 to either strategy are such that the corresponding probability p0

19

of choosing strategy 0 and p1 of choosing strategy 1 satisfies

25
eλa1

eλa0 + eλa1
= 25p1 = nc

where p1 = eλa1∑
i e
λai

is the Fermi/logit function.

We discussed the relationship between skill = 5 and APEX Legends in last section. Here we

can observe that the simulation of skill = 9 corresponding to PUBG contains a phase transition

at n = nc ≈ 16. It implies that the optimal choice for players is to be aggressive if there are

less than 16 players taking the aggressive strategy.

This equilibrium at nc = 16 explains why E-sports teams of PUBG usually play much more

aggressively than APEX Legends teams. Due to the high score given by every elimination,

players are more willing to engage in battles in early-game, even though there is a risk of losing

scores of ranking.

There is some enlightenment about how to make a good BRG. If an enthusiastic player

with professional-level skill wants to enjoy a certain BRG, there would certainly be more fun if

game mechanism and the scoring system are designed such that the phase transition point nc

exists, ideally at the half of the total number of participants. Because this allows for non-unique

optimal strategy that depends on the strategies taken by other players. The game theory behind

this scenario is non-trivial, unlike the APEX Legends case where the peaceful strategy is the

certainly optimal one no matter what other players choose to do. Hence, we can say PUBG is

a somehow a better designed game than APEX Legends, just in terms of diversity of strategies.

20

Chapter 5

Summary and outlook

5.1 Our results

In this thesis, we created a simplified mathematical model with a few free parameters to specify

the specific battle royale video game to be modelled. The game is modelled as a sequence

of discrete rounds. In every round, players are randomly chosen to fight with a probability

decided by their macroscopic strategies, decisions are made following the microscopic strategy.

and battles are simulated probabilistically. We managed to run multiple computer simulations

based on the model and investigate the how the strategies affect the game.

The microscopic strategy dominates the decision making process of players facing a battle.

The situation is modelled by a generalized asymmetric prisoner’s dilemma, where the payoff of

an action is computed based on expected scores if this action is executed. Thus the strategy is

choosing the best option determined by Nash equilibrium.

The macroscopic strategy is modelled by 2 discrete options – peaceful or aggressive. We

claim that under a certain setup of the model, there are up to Nplayers + 1 game-theoretic

different scenarios. With the data generated by repeated simulations, we managed to draw a

phase diagram that shows the optimal macroscopic strategy under certain condition and where

the boundary is. We also analyzed the evolution of macroscopic strategies: in some scoring

systems all players will tend to use the same strategy, while in systems with a phase transition,

there will be an equilibrium between the attraction of peaceful and aggressive strategies.

We also managed to give an explanation of why top-level PUBG games involve more early-

game battles than APEX Legends, by our simulations based on the model. We thus claimed

that our model has the descriptive power to distinguish the 2 games. Furthermore, we suggested

that a well designed battle royale game should not allow for a unique optimal strategy, because

21

in this case the fun of macroscopic decision-making will be reduced.

5.2 Outlook

We presented an analysis of evolution of macroscopic strategies and claimed there will be an

equilibrium, but the reason why we can do it is the model is highly simplified such that brute-

force simulations are sufficiently informative. It would be ideal if experience-weighted-attraction

(EWA) [5] learning can be performed to show the dynamics of players’ behavior and search the

equilibrium for more complex models, which we did not have time to do.

Although we claimed our model is descriptive, it would be much more convincing if compar-

ative research between real PUBG/APEX Legends E-sports game results and our simulation

results can be done. As a matter of fact, academic data analysis research of both games is still

missing, which makes it hard to compare the results.

22

References

1. Wikipedia: PlayerUnknown’s Battlegrounds https://en.wikipedia.org/wiki/PlayerUnknown%

27s_Battlegrounds.

2. Wikipedia: Apex Legends https://en.wikipedia.org/wiki/Apex_Legends.

3. Wikipedia: Sum of normally distributed random variables https://en.wikipedia.org/

wiki/Sum_of_normally_distributed_random_variables.

4. Virtanen, P. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.

Nature Methods 17, 261–272 (2020).

5. Camerer, C. & Hua Ho, T. Experience-weighted attraction learning in normal form games.

Econometrica 67, 827–874 (1999).

23

https://en.wikipedia.org/wiki/PlayerUnknown%27s_Battlegrounds
https://en.wikipedia.org/wiki/PlayerUnknown%27s_Battlegrounds
https://en.wikipedia.org/wiki/Apex_Legends
https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables

Appendix A

Program

1 import numpy as np

2 import random

3 import math

4 from scipy.stats import norm

5 from matplotlib import pyplot as plt

6

7 class Team:

8 def __init__(self , idd , atk , hp , stg):

9 self.id = idd

10 self.stg = stg

11 self.hp = hp

12 self.maxhp = hp

13 self.atk = atk

14 self.fight = -1

15 self.rest = 0

16 self.kills = 0

17 self.die = 200

18 self.rank = 0

19 self.score = 0

20

21

22 N_teams = 25 # total number of teams joining the game

23 N_learn = 100 # total number of games to simulate

24 T = 110 # Total number of rounds (time) in one game

25 P_stg0 = 0.1 # (base) probablity of being selected to a battle if STRATEGY

0 is chosen

26 P_stg1 = 0.3 # (base) probablity of being selected to a battle if STRATEGY

1 is chosen

27 teams = [Team(idd=i_team , atk=50, hp=100, stg=1) for i_team in range(N_teams

)] # Initialize all teams

28 score_survive = list(range (12, 2, -1)) + [2] * 5 + [1] * 5 + [0] * 5

29 score_survive [0:2] = 15, 12

30 score_kill = 5

31 atk_uncertainty = 0.3 # std = atk * uncertainty

32 successful_run = 0.5 # success probability of escaping from a battle

33

34 N_current_teams = N_teams

35 current_time = 0

36 survival_teams = list(range(N_teams))

37

38

39 def InitTeams ():

24

40 new_teams = [Team(idd=i_team , atk=50, hp=100, stg=0) for i_team in range

(N_teams)]

41 new_survival_teams = list(range(N_teams))

42 new_N_current_teams = N_teams

43 return (new_teams , new_survival_teams , new_N_current_teams)

44

45

46 def InitArea ():

47 r0 = 100.0

48 spdShrink = 2.0

49 tShrink = 10

50 tPhase1 = 20

51 tPhase2 = 40

52 tPhase3 = 60

53 tPhase4 = 80

54 tPhase5 = 90

55 ifShrink = np.zeros(T, dtype=int)

56 ifShrink [0: tPhase1] = 0

57 ifShrink[tPhase1:tPhase1 + tShrink] = 1

58 ifShrink[tPhase1 + tShrink:tPhase2] = 0

59 ifShrink[tPhase2:tPhase2 + tShrink] = 1

60 ifShrink[tPhase2 + tShrink:tPhase3] = 0

61 ifShrink[tPhase3:tPhase3 + tShrink] = 1

62 ifShrink[tPhase3 + tShrink:tPhase4] = 0

63 ifShrink[tPhase4:tPhase4 + tShrink] = 1

64 ifShrink[tPhase4 + tShrink:tPhase5] = 0

65 ifShrink[tPhase5 :] = 1

66 rs = np.zeros(T, dtype=float)

67 areas = np.zeros(T, dtype=float)

68

69 for ti in range(T):

70 if (ti >= 99):

71 rs[ti] = 0.1

72 elif (ti == 0):

73 rs[ti] = r0

74 elif not ifShrink[ti]:

75 rs[ti] = rs[ti - 1]

76 else:

77 rs[ti] = rs[ti - 1] - spdShrink

78

79 areas = rs * rs

80 return areas

81

82

83 Areas = InitArea ()

84

85

86 def Escape ():

87 rdm = random.random ()

88 return rdm > successful_run

89

90

91 def BattleRNG ():

92 # rng = random.random () * (AtkRateMax - AtkRateMin) + AtkRateMin

93 rng = np.random.normal(loc=1, scale=atk_uncertainty , size =1)[0]

94 if (rng < 0):

95 rng = 0

96 # print(rng)

97 return rng

98

25

99

100 def AtkIncrease(team_give , team_receive , in_place=True):

101 new_atk = max(team_receive.atk , team_give.atk) * 1.1

102 if in_place:

103 team_receive.atk = new_atk

104 return new_atk

105

106

107 def HPIncrease(team_give , team_receive , in_place=True):

108 new_hp = max(team_receive.maxhp , team_give.maxhp)

109 if in_place:

110 team_receive.maxhp = new_hp

111 return new_hp

112

113

114 def BattleSimulator(teamA , decisionA , teamB , decisionB):

115 teamA.rest = 0

116 teamB.rest = 0

117

118 BattleFlag = 0

119 EscapeFlag = 0

120

121 if (decisionB != decisionA):

122 BattleFlag = 1

123 EscapeFlag = Escape ()

124 elif (decisionA == 1) and (decisionB == 1):

125 BattleFlag = 1

126

127 teamA.fight = -1

128 teamB.fight = -1

129

130 if BattleFlag:

131

132 win = 0

133 teamA.hp -= teamB.atk * decisionB * BattleRNG ()

134 teamB.hp -= teamA.atk * decisionA * BattleRNG ()

135 if (teamA.hp <= 0) and (teamB.hp <= 0):

136 if teamA.hp < teamB.hp:

137 teamB.hp = 1

138 win = 2

139 else:

140 teamA.hp = 1

141 win = 1

142 elif teamB.hp <= 0:

143 win = 1

144 elif teamA.hp <= 0:

145 win = 2

146 else:

147 win = 0

148

149 if win == 1:

150 survival_teams.remove(teamB.id)

151 teamA.kills += 1

152 teamB.die = current_time

153 AtkIncrease(teamB , teamA)

154 HPIncrease(teamB , teamA)

155 elif win == 2:

156 survival_teams.remove(teamA.id)

157 teamA.die = current_time

158 teamB.kills += 1

26

159 AtkIncrease(teamA , teamB)

160 HPIncrease(teamA , teamB)

161 else:

162 if (not EscapeFlag):

163 teamA.fight = teamB.id

164 teamB.fight = teamA.id

165

166

167 def WinRate(hpA , atkA , hpB , atkB):

168 roundsA = hpB / atkA

169 roundsB = hpA / atkB

170 rounds = math.ceil(min(roundsA , roundsB))

171 return norm.cdf((rounds * (atkA - atkB) + hpA - hpB)

172 / (atk_uncertainty * math.sqrt(rounds * (atkA **2 + atkB

**2))))

173

174 def DecisionMaking(teamA , teamB):

175 # haven’t considered third team

176

177 #combat_effectiveness = np.array ([teams[id].hp * teams[id].atk for id in

survival_teams])

178 ceA = teamA.hp * teamA.atk

179 ceB = teamB.hp * teamB.atk

180 #argsort = combat_effectiveness.argsort ()

181 #argsort = np.flip(argsort) # sort in descending order

182 #combat_effectiveness = combat_effectiveness[argsort]

183 P_stg = [P_stg1 if teams[id].stg else P_stg0 for id in survival_teams]

184 P_total = sum(P_stg)

185 Pa = (P_stg1 if teamA.stg else P_stg0) / P_total

186 Pb = (P_stg1 if teamB.stg else P_stg0) / P_total

187

188 # case run

189 #rankA = np.searchsorted(-combat_effectiveness , -ceA)

190 #rankB = np.searchsorted(-combat_effectiveness , -ceB)

191 rankA = sum([1 - WinRate(teamA.hp, teamA.atk , teams[id].hp, teams[id].

atk)

192 for id in survival_teams if id != teamA.id])

193 rankB = sum([1 - WinRate(teamB.hp, teamB.atk , teams[id].hp, teams[id].

atk)

194 for id in survival_teams if id != teamB.id])

195 killA = (N_current_teams - rankA - 1) * Pa

196 killB = (N_current_teams - rankB - 1) * Pb

197 Arun = killA * score_kill + score_survive[int(rankA + 0.5)]

198 Brun = killB * score_kill + score_survive[int(rankB + 0.5)]

199

200 # case Alose Bwin

201 Alose = score_survive[N_current_teams - 1]

202 atkBwin = AtkIncrease(team_give=teamA , team_receive=teamB , in_place=

False)

203 hpBwin = HPIncrease(team_give=teamA , team_receive=teamB , in_place=False)

204 #ceBwin = atkBwin * hpBwin

205 #rankBwin = np.searchsorted(-combat_effectiveness , -ceBwin) # find new

rank

206 rankBwin = sum([1 - WinRate(hpBwin , atkBwin , teams[id].hp, teams[id].atk

)

207 for id in survival_teams if id != teamB.id and id != teamA.

id])

208 killBwin = 1 + (N_current_teams - rankBwin - 2) * Pb

209 Bwin = killBwin * score_kill + score_survive[int(rankBwin + 0.5)]

210

27

211 # case Awin Blose

212 Blose = score_survive[N_current_teams - 1]

213 atkAwin = AtkIncrease(team_give=teamB , team_receive=teamA , in_place=

False)

214 hpAwin = HPIncrease(team_give=teamB , team_receive=teamA , in_place=False)

215 #ceAwin = atkAwin * hpAwin

216 #rankAwin = np.searchsorted(-combat_effectiveness , -ceAwin) # find new

rank

217 rankAwin = sum([1 - WinRate(hpAwin , atkAwin , teams[id].hp, teams[id].atk

)

218 for id in survival_teams if id != teamA.id and id != teamB.

id])

219 killAwin = 1 + (N_current_teams - rankAwin - 2) * Pa

220 Awin = killAwin * score_kill + score_survive[int(rankAwin + 0.5)]

221

222 roundsA = teamB.hp / teamA.atk

223 roundsB = teamA.hp / teamB.atk

224 # A0 B0

225 Ra = Arun

226 Rb = Brun

227 # A1 B0

228 NmaxA = math.ceil (4.5 * atk_uncertainty ** 2 + roundsA

229 + 3 * atk_uncertainty * math.sqrt (4.5 *

atk_uncertainty ** 2 + roundsA))

230 Prun = sum ([(1 - successful_run) ** (i-1)

231 * norm.cdf((roundsA - i) / (atk_uncertainty * math.sqrt(i)))

232 for i in range(1, NmaxA + 1)]) * successful_run

233 Pwin = 1 - Prun

234 Ta = Awin * Pwin + Arun * Prun

235 Sb = Blose * Pwin + Brun * Prun

236 # A0 B1

237 NmaxB = math.ceil (4.5 * atk_uncertainty ** 2 + roundsB

238 + 3 * atk_uncertainty * math.sqrt (4.5 *

atk_uncertainty ** 2 + roundsB))

239 Prun = sum ([(1 - successful_run) ** (i-1)

240 * norm.cdf((roundsB - i) / (atk_uncertainty * math.sqrt(i)))

241 for i in range(1, NmaxB + 1)]) * successful_run

242 Pwin = 1 - Prun

243 Sa = Alose * Pwin + Arun * Prun

244 Tb = Bwin * Pwin + Brun * Prun

245 # A1 B1

246 #rounds = math.ceil(min(roundsA , roundsB))

247 #PA = norm.cdf((rounds * (teamA.atk - teamB.atk) + teamA.hp - teamB.hp)

248 # / (atk_uncertainty * math.sqrt(rounds * (teamA.atk**2 +

teamB.atk **2))))

249 PA = WinRate(teamA.hp , teamA.atk , teamB.hp , teamB.atk)

250 PB = 1 - PA

251 Pa = Awin * PA + Alose * PB

252 Pb = Bwin * PB + Blose * PA

253

254 if Pa > Sa and Pb > Sb:

255 Afight = True

256 Bfight = True

257 elif Pa < Sa and Pb > Sb:

258 Afight = False

259 Bfight = True

260 elif Pa > Sa and Pb < Sb:

261 Afight = True

262 Bfight = False

263 else:

28

264 Afight = (ceA > ceB)

265 Bfight = not Afight

266 return (Afight , Bfight)

267

268

269 def GetDensity ():

270 return float(N_current_teams) / Areas[current_time]

271

272

273 def SelectRNG(stg , hp):

274 density_factor = 1.0

275 RNG = random.random () + GetDensity () * density_factor

276 if ((stg == 0) or (hp < 20)):

277 return RNG > (1 - P_stg0)

278 else:

279 return RNG > (1 - P_stg1)

280

281

282 def LootRNG ():

283 hpinc = 0

284 atkinc = 0

285 lootrate = 0.1

286

287 rnghp = random.random ()

288 rngatk = random.random ()

289 if (rngatk < lootrate):

290 atkinc = 10

291 if (rnghp < lootrate):

292 hpinc = 20

293 return (hpinc , atkinc)

294

295

296 def SelectFights ():

297 newFightTeams = 0

298 selected_teams = []

299 for team in teams:

300 if ((team.fight == -1) and (team.hp > 0)):

301 if SelectRNG(team.stg , team.hp):

302 # print(team.id)

303 selected_teams.append(team.id)

304 newFightTeams += 1

305 # print(selected_teams)

306 if ((newFightTeams % 2) == 1):

307 newFightTeams -= 1

308 selected_teams.pop()

309 rem = newFightTeams

310 for i in range(newFightTeams):

311 p = random.randint(1, rem)

312 selected_teams[p - 1], selected_teams[rem - 1] = selected_teams[rem

- 1], selected_teams[p - 1]

313 rem -= 1

314 # print(selected_teams)

315 for i_team in range(int(newFightTeams / 2)):

316 teams[selected_teams[i_team * 2]]. fight = selected_teams[i_team * 2

+ 1]

317 teams[selected_teams[i_team * 2 + 1]]. fight = selected_teams[i_team

* 2]

318

319

320 def Simulator(simu_id=""):

29

321 # print(" Simulating "+ simu_id)

322

323 global N_current_teams

324 global current_time

325

326 # f2 = open(" survivalteams_ "+ simu_id +".csv","w")

327 # f3 = open(" battles_ "+ simu_id +".csv","w")

328

329 # f2.write("round ,team.id,team.maxhp ,team.hp,team.atk ,team.fight\n")

330 # f3.write("round ,teamA.id,teamA.hp,teamA.atk ,teamB.id,teamB.hp,teamB.

atk ,decisionA ,decisionB\n")

331 for i_round in range(T):

332 current_time = i_round

333

334 # print(" round",current_time ,"teams=",N_current_teams ,"Area=",Areas[

current_time],"Density=", GetDensity ())

335 for team_id in survival_teams:

336 team = teams[team_id]

337 # f2.write(str(i_round)+’,’+str(team.id)+","+str(team.maxhp)

+’,’+str(team.hp)+’,’+str(team.atk)+’,’+str(team.fight)+"\n")

338

339 considered = np.zeros(N_teams , dtype=bool)

340

341 for team_id in survival_teams:

342 team = teams[team_id]

343 if (considered[team.id]):

344 continue

345 if team.fight != -1:

346 considered[team.fight] = True

347 (decisionA , decisionB) = DecisionMaking(team , teams[team.

fight])

348

349 teamA = team

350 teamB = teams[team.fight]

351 # f3.write(str(current_time)+","+str(teamA.id)+","+str(teamA

.hp)+","+str(teamA.atk)+","+str(teamB.id)+","+str(teamB.hp)+","+str(teamB

.atk)+","+str(decisionA)+","+str(decisionB)+"\n")

352

353 BattleSimulator(team , decisionA , teams[team.fight],

decisionB)

354 N_current_teams = len(survival_teams) ### Here maintain

number of remaining teams

355 else:

356 team.rest += 1

357

358 (hpinc , atkinc) = LootRNG () ### Looting

359 team.maxhp += hpinc

360 team.atk += atkinc

361 team.hp = team.maxhp

362 # if (team.rest > 1): ### Recovering from last battle

363 # team.hp = team.maxhp

364 SelectFights () ### Select teams for next battles

365

366 teams.sort(key=lambda x: x.die , reverse=True)

367 cur_rank = 0

368 for team in teams:

369 team.rank = cur_rank

370 team.score = team.kills * score_kill + score_survive[cur_rank]

371 cur_rank += 1

372 teams.sort(key=lambda x: x.id, reverse=False)

30

373 ’’’

374 f = open(" scoreboard_ "+ simu_id +".csv","w")

375 f.write("team.id ,team.stg ,team.die ,team.rank ,team.kills ,team.score\n")

376 for team in teams:

377 f.write(str(team.id)+","+str(team.stg)+","+str(team.die)+","+str(team.

rank)+","+str(team.kills)+","+str(team.score)+"\n")

378 f.close() ’’’

379 # f2.close()

380 # f3.close()

381

382

383 ### Brute -force simulations

384 N_rounds = 10

385 S_0s = np.zeros(N_teams + 1, dtype=float)

386 S_1s = np.zeros(N_teams + 1, dtype=float)

387

388 for gametype in [1]:

389 print("gametype=", gametype)

390 gametype = 15

391 score_0s = []

392 score_1s = []

393 for i_round in range(N_rounds):

394 (teams , survival_teams , N_current_teams) = InitTeams ()

395 for i_team in range(N_teams):

396 if i_team < gametype:

397 teams[i_team].stg = 1

398 Simulator ()

399 for team in teams:

400 if team.stg == 0:

401 score_0s.append(team.score)

402 else:

403 score_1s.append(team.score)

404 score_0s = np.array(score_0s)

405 score_1s = np.array(score_1s)

406

407 plt.figure (0)

408 plt.hist(score_0s)

409 plt.title(

410 "Score distribution for strategy = 0 when number of 1s = " + str(

gametype)

411)

412 plt.xlabel("Mean score = " + str(np.mean(score_0s)))

413 plt.ylabel("Number")

414 plt.savefig("type" + str(gametype) + "game_0.png")

415 plt.close()

416

417 plt.figure (1)

418 plt.hist(score_1s)

419 plt.title(

420 "Score distribution for strategy = 1 when number of 1s = " + str(

gametype)

421)

422 plt.xlabel("Mean score = " + str(np.mean(score_1s)))

423 plt.ylabel("Number")

424 plt.savefig("type" + str(gametype) + "game_1.png")

425 plt.close()

426

427 plt.show()

428

429 print(np.mean(score_0s), str(np.mean(score_1s)))

31

	Introduction
	Modelling of the game
	Overview
	Scoring
	Players
	Fight matching
	Decision making
	Battle simulator
	Other details

	Microscopic Strategy: Fight or Retreat?
	Generalized asymmetric prisoners' dilemma
	Probability of different combat results
	Rewards under different combat results
	Nash equilibrium

	Macroscopic Strategy: Aggressive or Peaceful?
	Macroscopic strategies
	Type-n games
	Optimal strategy for skill=5 games
	Various skill values and phase transitions

	Summary and outlook
	Our results
	Outlook

	Program

